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NOTATIONS

a, diffusivité thermique;

C, = 21, /pU2, coefficient de frottement;

1, fonction de ¢ et de #;

1. f",  dérivées de f par rapport a n;

g, accélération de la pesanteur;

Gr, = gBqx*/kv?, nombre de Grashof ;

k, coefficient de conductibilité thermique;

Nu, = gx/k(Ty — T,), nombre de Nusselt;

Pr, = v/a, nombre de Prandtl;

q, densité du flux de rayonnement convertie en
chaleur sur la paroi et récupérée par le fluide;

Re, = U x/v, nombre de Reynolds;

T, température ;

To, température de la paroi;

T, température au sein du fluide ;

u, composante de la vitesse suivant la coordonnée
x;

U, vitesse du fluide loin de la paroi;

v, composante de la vitesse suivant la coordonnée
yi

X, coordonnée verticale ;

» coordonnée normale.

Symboles grécs

B, coefficient d’expansion volumique du fluide ;

e= +1, £ = — 1, si "écoulement est dirigé vers le bas et
dans le cas contraire;

8, fonction de ¢ et de n;

0,0, dérivée de @ par rapport a n;

iy viscosité dynamique;

v, viscosité cinématique ;

&, variables adimensionnelles ;

0, masse volumique;

70, contrainte de cisaillement a la paroi;

v, fonction de courant.

1. INTRODUCTION

ON TROUVE dans la littérature différents travaux concernant
Pinfluence de la convection naturelle sur la convection forcée
au-dessus d’une surface plane verticale dont la température
est imposée [1-6] mais, 4 notre connaissance, rien si la
surface est soumise a un flux de rayonnement. Seul le cas ou la
surface est horizontale parait avoir été étudié [ 7]. Pourtant ce
probléme est important, notamment en énérgétique solaire.

Considérons un plan vertical semi-infini dont une face est
frappée par un rayonnement thermique tandis que l'autre est
léchée par un fluide en écoulement, parallélement a sa surface.
L’échauffement du plan par le rayonnement, donne naissance
4 une convection naturelle dans le fluide qui perturbe
Pécoulement forcé.
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Nous nous proposons de calculer en régime laminaire
permanent, les distributions des vitesses et de la température,
dans la couche limite qui se développe sur le plan dpartir de
son bord d’attaque par le fluide.

Nous supposons constantes la densité g du flux d’énergie
converti en chaleur sur le plan et récupérée par le fluide, la
température T et la vitesse U, du fluide loin de la paroi, les
propriétés physiques du fluide autres que sa masse volumique.

2. FORMULATION DU PROBLEME

Soient x la coordonnée verticale, mesurée positivement
dans la direction de Pécoulement forcé a partir du bord
d’attaque et y la distance normale au plan mesurée positive-
ment vers le sein du fluide.

11 faut résoudre le systéme différentiel:

ou v
—+—=0 1
x oy o)
ou fu  u
u$+v-a—y=va—yT+agB(T— Tm) (2)
oT + vbT 2T )
U—+v—=a—
dx dy a oy?
avec les conditions aux limites:
T
y=0, u=v=_0, q=—k% 4)
y=ow, u=U, T=T,; (5)
& = + 1 lorsque I'’écoulement est dirigé dans le méme sens que
la pesanteur (vers le bas) et £ = — 1 dans le cas contraire.
Introduisons la fonction de courant y définie par
oy
u= F 6)
g
b= )]
et les changements de variables classiques:
Gr
¢= R ®
gBax*
Gr = o 9)
U
Re= 2% (10)
n=yU,/vx)'? (11)
x,y)
R (12)

‘,Umx)uz
06, m) = (T — T XU o x/v) *gx/k). (13)

A laide de (8)-(13) le systéme (1)-(5) est transformé dans le
systéme suivant d’équations:
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rrespr=ge(rg-rd)-a oa
B30 - =3e(rg-e%) 09

avec les conditions aux limites:
J{,0)= f0=0 6¢0=-1 (16)
Jo)=1, 8(¢,20)=0. amn

Supposons £ « 1 et développons les fonctions f(&,7) et
6(,n) en séries de puissances de &:

FEM =folm) + Ef 1y + EXf ) + - (18)
8(L,m) = 85(n) + E0,(m) + E20,(m) + -+ - . (19)

En portant ces expressions dans le systéme (14)-(17), on
obtient une suite récurrente de systémes d'équations différen-
ticlles ordinaires d’ordre 0, 1, 2, ... . Il vient par exemple:

—Pour ['ordre zero:
—fof'é =0 (20
l " 1 ’ ’
}79 +§(f090"f090)=0 (21)
avec les conditions aux limites:
fo0)=0, fo0)=0, 60 =—1 (22)
fo(wy=1, Bp(0)=0. (23)
—Pour Yordre 1:
1 3
U2 So 4 o= i fo+ B =0 (24)
1 1 )’ ' 1 ' 1 U
Fr_ol+2f100_201f0_5f100+§01f0=0 (25)
avec les conditions aux limites:
[0)=0, f1(0)=0, 060)= (26)
Si(0)=0, 08;(cc)=0. 27

~Pour 'ordre 2:
3
SR = 3fafo+ e, =0

(28)

o 1o R
z+§f2 o+2f1f1+§fofz"

17 R
Fe'z"*"z‘fz 6+201f1+§f092

.Sy = 2o~ 3 200 =0 (29)

avec les conditions aux limites:
£:00)=0, f30)= 65(0) = (30)
o) =0, 8;(c0)=0. an

L'intégration numérique de ces systémes permet de calculer
les distributions de la vitesse et de la température.

Tableau 1. Valeurs de f5(0), f1(0),

Shorter Communications

3. INTEGRATIONS NUMERIQUES ET RESULTATS

Nous utilisons la méthode de Runge—-Kutta du 4éme ordre
modifiée par [8]. Pour effectuer les intégrations, on dispose &
chaque fois de trois conditions sur la paroi et de deux
conditions a I'infini. Or, il faut aussi connaitre les valeurs a la
paroi des dérivées des vitesses et de la température. Pour cela,
nous utilisons la méthode de [9]. Cette connaissance est
impérative pour le premier terme de notre suite récurrente de
systémes différentiels tandis que pour les autres termes, qui
sont linéaires, on peut démarrer les calculs en prenant
n’importe quelle valeur initiale.

Les Tableaux 1-2 rassemblent pour différentes valeurs du
nombre de Prandtl, d’'une part les valeurs de f7(0) et 6(0)
(Tableau 1) d’autre part les variations de f et 8, en fonction de
n (Tableau 2).

La distribution de la vitesse en fonction de f(n) s’écrit:

_O% _oyon . d(f(n)

dy mdy * dn

soit

2
‘—fo(ﬂ)‘*‘f (")R 5/2 +f2(”)[R 5/2] + . (32)

La distribution de la température en fonction de 0(n) s’écrit:

T-T, 65
To— T, 00)

Gr T
Bo(n) + 0, (’1)R 7t z(ﬂ)[R 5/2] +
= - (33)

Gr I
6,(0) + 6, (0)R st 62(0)[@] +--

Compte tenu de la loi de Fourier selon laquelle ¢ =
— k(0T/0y), o ct des définitions de la contrainte de cisaille-
ment 4 la paroi, du nombre de Nusselt local:

qx
(To— Tk’

du coefficient de frottement local

Nu =

_ 21,
f—pUi,

on déduit de (32)—(33) les expressions:

1
NuRe 12 = ____
e 8(,0)

Gr \? -1
|00+ 00055+ 0.0)(3552) e | on
CRe' = 27(2,0)
2
[ (0)+f”(0)R 572 +f3 (O)(R 5/2> +] (35)

A titre d’exemple les Figs. (1)-(2) montrent les variations de
u/U , etcellesde (T— T )T, — T,) en fonction de n pour
Pr = 0,7 et différentes valeurs de ¢.

3(0), 84(0), 8,(0), 8,(0) pour Pr = 1072; 107 %, 0,7; 1; 10; 100

Pr J4(0) 684(0) J10) 8,(0) - f30) 8,(0)
102 0.33206 8.74748 13.0633 179081 126.949 407.404
10! 0.33206 493984 8.54192 11.5070 38.0465 147.422

0.7 0.33206 246371 248689 2.84295 6.24779 14.8624

1.0 0.33206 2.17879 2.05983 2.15080 4.35316 9.45458

10 0.33206 1.00212 0.55473 0.30196 0.33879 0.38178

100 0.33206 0.46469 0.13041 0.03432 0.01924 0.01045
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Pr = 100 {+)
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Pr =100 {~)
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1O
Pr=10(-)
/
o,ak
0,61
__Pr=07(+)
T s e %
7= ylam) Pr=07(-)
¥x 0,2 Pr=0.01{+}
F1c. 1. Variations de u/U _ en fonction de y pour Pr = 0,7 et Pr=001(~)
différentes valeursde (. D & = 0lete = + 1;@ ¢ =001 et 0 l | | L
e=+1,0f=00lete=~1;@¢=0lete=—1.La ol 0z 03 04 05 06 07

courbe en trait discontinu correspond a ¢ = 0. §= o
e
F16. 3. Variations de Nu Re™ ! en fonction de ¢ pour Pr =
1072, 0,7, 10; 100. Le signe (+)indique que ¢ = +letle
signe {— ) indique que ¢ = — L.

0.9+

orf Pr =001 (+)
/

e

Pr=0.7(+) Pr=10(+
/

/2
e

Pr =100 (+)

C,R

L
F]

o .
U (/2 O 02 03 04 o5 06 07
1=y(5%) €= S
RS/2
F1G. 2. Variations de (T — T )T, — T) en fonction de
pour Pr = 0,7 et différentes valeursde {.(D{ = O,lete = — 1;  FIG. 4. Variations de $C;Re'” en fonction de & pour Pr

@¢=00letg= — 1;0{=00lete =+ 1;:@{=0let =10"%;0,7;10;100. Le signe (+ ) indique que » = -+ 1 et le
¢ = + 1. La courbe en trait discontinu correspond 4 ¢ = 0. signe (—) indique que £ = ~ 1.
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Les Figs. (3)4) représentent respectivement pour: Pr=
1072;0,7; 10; 10 les variations de Nu. Re~ % et celles de
1C;. Re'” enfonction de ¢ déduites de (34)-(35) (approxima-
tion du 2nd ordre).

Insistons sur le fait que ces résultats ne sont valables que
pour ¢ « 1.
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LAMINAR VISCO-ELASTIC FLOW AND HEAT TRANSFER
BETWEEN TWO STATIONARY UNIFORMLY POROUS
DISCS OF DIFFERENT PERMEABILITY
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Post-Graduate Department of Mathematics, Utkal University, Vani Vihar,
Bhubaneswar-751004, Orissa, India
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NOMENCLATURE
2a, channel width;
E, Eckert number ;
f(n),f'(n), functions defined in (4);
Jom).f1(n).f2(n), functions defined in (7);
P, pressure ;
P, Prandt]l number;
q, Nusselt number;
os the distance of a given point on either disc
from the centre;
r, dimensionless radial distance;
r,e.z, cylindrical polar coordinates;

R, Reynolds number;

S, elastic parameter ;

Ty, Ty constant temperatures at the discs;

w,v, velocity components in r, z' directions
respectively ;

u, v, dimensionless velocity components;

Vi,V constant velocities at the discs.

Greek symbols

n, dimensionless axial distance;
0, dimensionless temperature ;
05(n), 05(n), functions defined in (12);

, the ratio of r by ry;
T, dimensionless skin friction;
@, dissipation function.

1. INTRODUCTION

ProBLEMS of flow and heat transfer between two parallel
porous or non-porous discs are of great importance in the
design of thrust bearings, radial diffusers etc. Elkouh [1],
Mishra et al. [2], Rasmussen [3] and Wang [4] studied a few
problems between two rotating porous discs. All these
authors confined their discussions to either constant suction
or equal rates of suction and injection at the discs. Terril and
Cornish [5] studied the problem of radial flow of a viscous,
incompressible fluid between two stationary, uniformly po-
rous discs of different permeability and obtained solutions for
small as well as large suction and injection velocities. The
purpose of this paper is to generalize Terril and Cornish’s [5]
problem to visco-elastic fluid and to study related heat
transfer problem. Since the visco-¢lastic fluids are being used
as lubricants this problem may be useful in the design of the
externally pressurized thrust bearings. The visco-elastic fluid
model considered is given by Walters [6].

2. MATHEMATICAL ANALYSIS

Consider the fluid in between two infinite porous discs 2’ =
—aand z’ = a. The fluid is injected or sucked normally with
constant velocity V', at zZ = —ag and V, at 2/ = 4. These
velocities may have either sign but will be assumed positive in
positive z’-direction. The discs are maintained at constant
temperatures T, and T, respectively. The geometry of the
problem is shown in the Fig. 1. We shall work through



